PRISTINE: Profile-based Inference for Statistical Networks¶
PRISTINE is a modular framework for phylogenetic likelihood inference, built in PyTorch ≥ 2.6 and Python ≥ 3.10.
It supports: - Efficient likelihood computation with Felsenstein's pruning algorithm - Model-based simulation and inference (e.g., GTR, BDS) - Parameter profiling and Laplace approximation - Relaxed and strict molecular clocks - Transparent and flexible parameter management
📌 Quick Start¶
- Install locally:
pip install -e .
-
Run a minimal inference:
from pristine import optimize, binarytree, gtr ...
📦 Components¶
Module | Description |
---|---|
felsenstein.py |
FPA-based log-likelihood engine |
gtr.py |
GTR substitution model |
sequence.py |
Sequence simulation and pattern collapse |
molecularclock.py |
Strict and relaxed clock models |
laplace_estimator.py |
Laplace approximation of uncertainty |
likelihood_profiler.py |
Confidence intervals via profiling |
binarytree.py |
Tree structure and simulation |
edgelist.py |
Time-aware representation of trees |